Synthesis and structural characterization of a novel dimolybdenum(I) compound with mixed-tribridging ligands:

 $[Bu₄N][Mo₂(\mu-SPh)₂(\mu-Cl)(CO)₆]$

PAN, Guo-Hua(潘国华)

ZHUAG, Bo-Tao*(庄伯涛)

HE, Ling-Jie(何玲洁)

CHEN, Jiu-Tong(陈久桐)

LU, Jia-Xi(卢嘉锡)

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

A novel mixed-tribridged dimolybdenum(I) compound $[Bu_4N][Mo_2(\mu\text{-SPh})_2(\mu\text{-Cl})(CO)_6]$ (1) has been synthesized from the reaction of $Mo_2(CO)_8(SPh)_2$ with Bu_4NCl . Compound 1 was characterized by IR, UV-Vis and 1H , ^{13}C , ^{95}Mo NMR spectroscopic analyses. The electrochemical behavior was measured by cyclic voltammetry, indicating a quasi-reversible two-electron transfer in one step. The crystal structure determined by X-ray crystallography shows that 1 contains a $[Mo_2(\mu\text{-S})_2(\mu\text{-Cl})]$ core with a planar Mo_2S_2 unit and a Cl bridge. The Mo—Mo distance is 0.28709(7) nm, and the Mo-Cl-Mo angle is $66.44(4)^\circ$. A newface-sharing bioctahedral structure is discussed.

Keywords Molybdenum(I) compound, crystal structure, Mo_2S_2 unit, cofacial bioctahedral structure, IR, NMR, CV

Introduction

The study of bimetallic complexes has been an active research area as metal-metal interaction generally results in unique physical and chemical properties. 1 In this respect, dinuclear molybdenum complexes have been extensively investigated. 2 To our knowledge, however, so far a few Mo(I) complexes have been systematically investigated in the literature except $[\mbox{ CpMo(CO)}_3]_2$, $^3[\mbox{ CpMo(CO)}_2]_2^4$ and $[\mbox{ Mo_2Cp_2(CO)}_4(\mu\mbox{-Ph_2PCH_2PPh_2})]$. Recently, an attempt to develop novel Mo(I) complexes has been carried out by introducing a variety of function-

al ligands into the parent compound $Mo_2(\mu\text{-SPh})_2$ - $(CO)_8^6$ (2). We describe here synthesis and characterization of a mixed tri-bridged dimolybdenum(I) compound 1, where chloro ligand was introduced into 2 by a carbonyl substitution reaction. Compound 1 exhibits a unique face-sharing bioctahedral structure, which could be viewed as one dodecahedron with upper-half splitting.

Experimental

Materials and methods

All the work described here was carried out under an atmosphere of N2. All solvents used were dried and deoxygenated prior to use. $Mo_2(\mu-SPh)_2(CO)_8(2)$ was prepared according to published method. 6 Bu₄NCl was purchased from Shanghai Chemical Reagent Co. Elemental analyses were performed on a Carlo Erba MOD 1106 analyzer. Infrared spectra (KBr/CsI pellet) were recorded on a Magna 750 spectrometer. UV-Vis spectra were recorded in acetone solutions in a quartz cell on a Schimadyzu UV-3000 UV-Vis spectrometer. NMR spectra of the sample in acetone were measured on Varian Unity-500 NMR spectrometer operated at 499.864 MHz for ¹H, 125.708 MHz for ¹³C, 32.544 MHz for ⁹⁵Mo. Proton and carbon chemical shifts are relative to internal acetone solvent, and molybdenum's is relative to external aqueous 2 mol/L Na₂MoO₄ solution. Cyclic voltam-

Received February 2, 2000; accepted April 20, 2000.
 Project supported by the National Natural Science Foundation of China (No. 29733090-3) and State Key Laboratory of Stractural Chemistry (No. 980008).

metry (CV) measurement was carried out on CV-1B from BAS (Bioanalytical Systems), using 0.10 mol/L Et₄NBF₄ as the supporting electrolyte and acetone as solvent. The working electrode was a glassy carbon (area 0.0804 cm²), the auxiliary electrode was a platinum wire and the reference electrode was an aqueous SCE separated from the sample solution by a salt bridge containing 0.1 mol/L Et₄NBF₄ in the solvent. Solutions were deoxygenated and blanketed with nitrogen. As a comparison, compound 2 and ferrocene were measured under the identical condition. $E_{1/2} = +0.48 \text{V}(+0.54/$ 0.42 V vs. SCE) for the ferrocene-ferrocenium couple and $E_{1/2} = -0.35 \text{ V } (-0.41/-0.30 \text{ V } \text{vs. SCE})$ for compound 2. The concentration of the compounds in these measurements was 0.0013 mol/L, the scan rate was 100 mV/s.

Synthesis of $[Bu_4N][Mo_2(\mu-SPh)_2(\mu-Cl)(CO)_6]$ (1)

To a stirred green solution of $Mo_2(\mu-SPh)_2(CO)_8$ (2) (0.634 g, 1.0 mmol) in acetone (30 mL) was added Bu₄NCl (0.278g, 1.0 mmol) at room temperature, the solution color instantly turned from green to brown, accompanied by a vigorous CO evolution. After being stirred for 2 h, the solution was reduced to ca. 5 mL under vacuum and 15 mL i-PrOH was added dropwise. The resulting brown solution was filtered, then the filtrate was allowed to stay at -4° C for several days to afford black crystals. Compound 1 as a crystalline product was obtained by filtration, washed with i-PrOH and dried in vacuum. The rest products were collected from the mother liquid by repeating above procedure till no crystalline products appeared (total 0.75 g, 87%). $\nu_{\text{max}}(\text{KBr})$: 2962m, 2935w, 2875w, 1994s, 1955s, 1940s, 1903s, 1846s, 1576m, 1475m, 14560w, 1437m, 1375m, 1300w, 1277w, 1176w, 1151w, 1105w, 1065w, 1022m, 999w, 879m, 802w, 750s, 744s, 688s, 621m, 590m, 530w, 515w, 503m, 486w, 476m, 437w, 426m cm⁻¹. ν_{max} (CsI): 590, 530, 515, 503, 484, 478, 436, 426, 359, 345, 284, 247, 224, 191, 174, 152 cm⁻¹. λ_{max} (CH₃COCH₃): $444,402,330,315 \,\mathrm{nm}.\delta_{\mathrm{H}}(\mathrm{CD_3}\mathrm{COCD_3}):7.21-7.61$ (m, 10 H, SPh), 3.44 (t, Hz, 8^d H, C^d H₂ CH₂ - CH_2CH_3), 1.82(m, 8°H, $CH_2C^cH_2CH_2CH_3$), 1.46 $(m, 8^bH, CH_2CH_2C^bH_2CH_3), 1.01 (t, 12^aH,$ $CH_2CH_2CH_2C^aH_3$). δ_C (CD_3COCD_3): 231. 66 (CO trans to Cl), 222.63 (CO cis to Cl), 145.31 (Ph), 135.73 (Ph), 133.53 (Ph), 128.73 (Ph), 59.96 (Bu₄N), 24.96 (Bu₄N), 20.86 (Bu₄N), 14.38 (Bu₄N). δ_{Mo} (CD₃COCD₃,): -739.5. Anal. $C_{34}H_{46}$ -ClMo₂NO₆S₂, Calcd: C, 47.70; H, 5.42; N, 1.64. Found: C, 47.61; H, 5.40; N, 1.65.

X-ray crystal structure determination

X-ray quality crystals of $1 \cdot \text{CH}_3\text{COCH}_3$ were grown in acetone/isopropanol parent liquid. Data were collected on a Siemens SMART area detector and using graphite - monochromated Mo K_α X - radiation (λ = 0.0071073 nm) over a hemisphere of reciprocal space by a combination of three sets of exposures. Each set had a different ϕ angle for the crystal and each exposure of 10 s covered 0.3° in ω . The crystal-to-detector distance was 4.95 cm. Coverage of the unique set was over 99% complete to at least 23° in θ . Details of the crystal parameters, data collection and refinement are given in Table 1. Data were corrected for Lorentz and polarisation

Table 1 Crystal and structure refinement data for 1 · CH₃COCH₃

Empirical formula	C ₃₇ H ₅₂ ClMo ₂ NO ₇ S ₂
$F_{ m w}$	914.25
Temperature (K)	293(2)
Wavelength	0.71073
Space group	Monoclinic
Crystal system	P2(1)/n
a (nm)	0.96470(1)
b (nm)	2.38437(4)
c (nm)	1.94845(3)
B (°)	103.2890(10)
$V \left(\text{nm}^3 \times 10^3 \right)$	4361.91(10)
\boldsymbol{Z}	4
$D_{\rm c}~({\rm g/cm^3})$	1.392
μ (mm ⁻¹)	0.775
F (000)	1880
size	$0.35 \times 0.15 \times 0.07$
η (°)	2.02-23.27
refins collected	16893
independent reflns	6266
data/restraints/params	6266/0/452
Gof	0.717
$R1$, w $R2(I > 2(\rho I))$	0.0415, 0.1434
R1, w $R2$ (all data)	0.0565, 0.1677
$(\Delta \! / \sigma)_{\mathrm{max}}$	0.029
$\Delta\! ho_{ m mex}$	0.632
$\Delta ho_{ m min}$	- 0.414
7/7 7/7	no [5] (n) n());

 $R1 = \sum (F_{o} - F_{c}) / \sum F_{o}, \quad wR2 = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}$

Table 2 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($nm^2 \times 10^5$) for $1 \cdot CH_3 COCH_3$.

	x	y	z	$U(\mathrm{eq})$
Mo(1)	1945(1)	730(1)	7398(1)	56(1)
Mo(2)	1088(1)	1652(1)	8155(1)	55(1)
CI	1075(2)	1693(1)	6808(1)	77(1)
S(1)	- 471(2)	873(1)	7603(1)	59(1)
S(2)	3557(2)	1447(1)	8075(1)	59(1)
C(1)	2668(6)	109(3)	8010(3)	60(1)
C(2)	940(8)	161(3)	6703(4)	82(2)
C(3)	3546(7)	608(3)	6916(4)	73(2)
C(4)	1117(6)	1431(2)	9112(3)	58(1)
C(5)	<i>– 777(7)</i>	2042(3)	8123(3)	71(2)
C(6)	1963(8)	2376(3)	8556(4)	80(2)
C(11)	- 1064(6)	410(2)	8197(3)	58(1)
C(12)	- 2515(7)	348(3)	8105(4)	76(2)
C(13)	- 3055(8)	- 12(4)	8545(4)	90(2)
C(14)	-2181(8)	- 317(3)	9040(4)	86(2)
C(15)	-734(8)	- 264(3)	9137(4)	86(2)
C(16)	- 178(6)	108(3)	8719(3)	76(2)
C(21)	4749(6)	1227(2)	8873(3)	58(1)
C(22)	4398(6)	880(2)	9367(3)	63(1)
C(23)	5409(7)	739(3)	9968(4)	71(2)
C(24)	6780(8)	929(3)	10078(4)	80(2)
C(25)	7149(7)	1273(4)	9580(4)	92(2)
C(26)	6151(6)	1434(3)	8984(4)	76(2)
0(1)	3151(5)	- 265(2)	8362(2)	79(1)
0(2)	408(7)	- 188(3)	6334(3)	125(2)
O(2)	4438(6)	528(3)	6639(3)	108(2)
0(4)	1064(5)	1298(2)	9680(2)	77(1)
0(5)	- 1822(6)	2267(2)	8115(3)	107(2)
0(6)	- 1622(0) 2444(7)	2783(3)	8812(4)	120(2)
N	- 622(5)	- 2847(2)	9117(3)	73(1)
C(31)	- 1665(7)	- 2433(3)	9326(4)	90(2)
C(32)	- 3024(8)	- 2433(3) - 2337(4)	8778(5)	101(2)
C(32)	- 4103(15)	- 2337(4) - 2015(7)	9211(11)	246(13)
C(34)		- 2013(7) - 1848(7)		297(13)
	- 5091(28)		8728(14)	
C(41)	693(7)	- 2849(3)	9727(3)	76(2)
C(42)	1858(7)	- 3248(4)	9672(4)	92(2)
C(43)	3181(9)	- 3148(5)	10263(5)	120(3)
C(44)	4327(11)	- 3564(5)	10250(6)	144(4)
C(51)	- 1289(7)	- 3423(3)	8999(4)	76(2)
C(52)	- 1775(10)	- 3682(3)	9598(4)	100(2)
C(53)	- 2192(13)	- 4293(4)	9436(5)	132(4)
C(54)	- 2561(16)	- 4602(6)	10019(6)	170(5)
C(61)	- 244(8)	- 2674(3)	8431(4)	81(2)
C(62)	403(9)	- 2095(4)	8427(5)	98(2)
C(63)	589(13)	- 1966(4)	7684(6)	132(4)
C(64)	1160(16)	- 1393(6)	7624(8)	179(6)
0	-656(14)	3521(7)	8752(8)	264(7)
C(71)	- 2058(26)	4221(10)	8207(16)	364(21)
C(72)	- 854(18)	3906(6)	8345(8)	156(5)
C(73)	289(23)	3996(8)	799 1(10)	237(9)

effects and for absorption effects by SADABS.⁷ The structure was solved by conventional direct methods (SHELXTL) and was refined by the full-matrix least-squares method on all F^2 data using Silicon Graphes Indy computer and local programms.⁸ All non-hydrogen

atoms were refined anisotropically; hydrogen atoms were located at idealized positions and refined with fixed isotropic thermal parameters. The atomic coordinates and thermal parameters for 1 • CH₃COCH₃ are listed in Table 2.

Results and discussion

Synthesis

Compound 1 was prepared by reacting $Mo_2(\mu\text{-SPh})_2(CO)_8$ with 1 equiv. of Bu_4NCl in CH_3COCH_3 (Eq. (1))

$$Mo_2(\mu-SPh)_2(CO)_8 + Bu_4NCl \longrightarrow [Bu_4N][Mo_2(\mu-SPh)_2(\mu-Cl)(CO)_6] + 2CO$$
 (1)

Decarbonylation reaction of $Mo_2(\mu\text{-SPh})_2(CO)_8$ resulted in mixed-tribridged product 1. Attempt to prepare tetrabridged species as designed formula $[Mo_2(\mu\text{-SPh})_2(\mu\text{-Cl})_2(CO)_4]^{2-}$ by using excess (> 4fold) Bu_4NCl met with no success. The use of excess Bu_4NCl in the preparation still gave tri-bridged products 1 (confirmed by IR). Excess of Bu_4NCl accelerated the reaction, but had no influence on the yield.

Spectra

The infrared spectrum of 1 exhibited the vibration absorptions of $\nu_{(CO)}$ at 1994(s), 1955(s), 1940(s), 1903(s), 1846(s); $\nu_{\text{(Mo-Cl)}}$ at 247; $\nu_{\text{(Mo-S)}}$ at 426; $\nu_{\text{(Mo-C)}}$ at 359 and 284 cm⁻¹. The CO peaks shift to red relative to those of 2, owing to the increased metal-to-CO back-donating with Cl replacing CO. A ratio 2:1 of ¹³C NMR of carbonyl observed indicates only one carbonyl was substituted in the Mo(CO)₄ fragment of 2. The 95 Mo NMR chemical shift for compound 1 is δ -739.5, which is at more downfield than that of Mo2- $(\mu\text{-SPh})_2(\text{CO})_8(\delta-1112.30)$, indicating a larger deshielding when chlorine displaces carbonyl group. This downfield shift should be mainly caused by the fact that chlorine is a weaker electron-donating ligand than carbonyl, even though carbonyl is a strong π -acceptor. Only one 95 Mo NMR chemical shift was observed in 1. This is consistent with the X-ray analysis that the geometry of the two Mo atoms in 1 is essentially identical.

Structure

Fig. 1 shows the structure of dinuclear anion of 1,

and Table 3 lists selected bond distances and angles. The coordination sphere of each Mo atom consists of two cis-CO groups and two cis-bridging S atoms from SPh ligands forming the equatorial plane while one CO and one bridging Cl ligand filling the imposed axial positions. Two fac-Mo(CO) $_3$ fragments are linked together by the hetero-tri-bridging ligands forming a Mo $_2$ S $_2$ Cl core,

Fig. 1 Structure of the anion of 1.

Scheme 1

in which Mo₂S₂ unit is nearly planar (within 0.007 nm). Seven atoms, Cl, Mo(1), Mo(2), C(1), O (1), C(4) and O(4) are also approximate coplanar (within 0.0085 nm), with a Mo-Mo bond, to form a "A-frame". 9 Both benzene rings from two SPh bridging ligands are in a syn-orientation relative to the planar Mo₂S₂ unit, and the chlorine atom bridges two Mo atoms by substituting for two axial CO ligands of the parent compound 2. Interestingly, the wholly configuration of the anion of 1 can be viewed as one dodecahedron with upper half splitting into two, which can be considered as a result from conversion of an edge-sharing bioctahedron of parent compound 2 to a face-sharing bioctahedral structure (Scheme 1). This interesting change is attributed to the fact that the Mo₂S₂ unit in compound 1 strongly adopts a planar configuration instead of a "butterfly" one which would lead to a cofacial bioctahedral

structure of imposed D_{3h} symmetry of the MoS₂ClMo core

The fact that the Mo—Cl (0.2617(2), 0.2624 (2) nm) distances are comparatively long and the Mo-Cl-Mo (66.44(4)°) angle is acute indicates weak Mo—Cl bonding. The structural effect of introducing a bridging chlorine atom replacing an axial CO in compound 2 can be appreciated by comparing the bond lengths and angles in Table 3. The Mo₂S₂ unit contracts slightly resulting in slightly smaller Mo-S-Mo angles and slightly shorter Mo—Mo distance. The Mo—S distances of 1 are essentially equal to those of 2. It is evident that owing to the *trans* effect of the chlorine bridging ligand, the trans Mo—C distances are considerably shorter than those *cis* to chlorine in contrast with 2, and this might be the reason why tetra-bridged compound could not be obtained by the synthetic reaction.

Table 3 Selected bond lengths (nm) and angles (°) for 1 · CH₃COCH₃

Cl—Mo(1)	0.2617(2)	Mo(1)—Mo(2)	0.28709(7)
Cl—Mo(2)	0.2624(2)	Mo(1)—C(4)	0.1931(6)
$M_0(1)$ — $C(1)$	0.1929(6)	Mo(1)—C(6)	0.2001(8)
Mo(1)—C(2)	0.2003(8)	Mo(1)—C(5)	0.2013(7)
Mo(1)— $C(3)$	0.2005(7)	Mo(2)—S(1)	0.2474(2)
$M_0(1)$ —S(1)	0.2476(2)	$M_0(2)$ —S(2)	0.2471(2)
Mo(1)— $S(2)$	0.2477(2)	(-, -(-,	
Mo(1)-Cl-Mo(2)	66.44(4)	C(4)-Mo(2)-S(1)	95.0(2)
$C(1)-M_0(1)-S(1)$	103.1(2)	C(5)-Mo(2)-S(1)	83.3(2)
$C(2)-M_0(1)-S(1)$	82.8(2)	C(6)-Mo(2)-S(1)	167.7(2)
$C(3)-M_0(1)-S(1)$	161.8(2)	C(4)-Mo(2)-S(2)	101.9(2)
$C(1)-M_0(1)-S(2)$	96.1(2)	C(5)-Mo(2)-S(2)	163.1(2)
$C(2)-M_0(1)-S(2)$	167.0(2)	C(6)-Mo(2)-S(2)	82.5(2)
$C(3)-M_0(1)-S(2)$	83.8(2)	S(1)-Mo(2)-S(2)	108.82(5)
S(1)-Mo(1)-S(2)	108.58(5)	C(4)-Mo (2) -Cl	166.3(2)
C(1)-Mo(1)-Cl	168.2(2)	C(6)-Mo (2) -Cl	105.3(2)
C(2)-Mo(1)-Cl	103.9(2)	C(5)-Mo(2)-Cl	98.8(2)
C(3)-Mo(1)-Cl	97.2(2)	Mo(1)-S(1)-Mo(2)	70.90(4)
S(1)-Mo(1)-Cl	74.42(5)	$M_0(1)-S(2)-M_0(2)$	70.93(4)
S(2)-Mo(1)-Cl	74.22(5)	S(1)-Mo(2)-Cl	74.33(5)
$S(1)-M_0(1)-M_0(2)$	54.51(4)	S(2)-Mo(2)-Cl	74.18(5)
S(2)-Mo(1)-Mo(2)	54.45(4)	S(1)-Mo(2)-Mo(1)	54.59(4)
Cl-Mo(1)-Mo(2)	56.90(4)	$S(2)-M_0(2)-M_0(1)$	54.62(4)
Cl-Mo(2)-Mo(1)	56.66(4)		

Electrochemical behavior of 1

The CV of 1 (Fig. 2) shows a redox couple at -0.79(-0.72/-0.86) V vs. SCE with $i_{\rm a}/i_{\rm c}\approx 1$. The peak current parameter ($i_{\rm p}/\nu^{1/2}$ AC) is 1435

Acms^{1/2} · V^{-1/2} · mol⁻¹, which is twice as that (688 Acms^{1/2} · V^{-1/2} · mol⁻¹) of ferrocene (which has been known as one-electron process) and is comparable with that (1360 Acms^{1/2} · V^{-1/2} · mol⁻¹) of compound 2 (which has been manifested to undergo a chemically and electro-

chemically reversible two-electron reduction in a single step, ¹⁰) obtained under identical measurement conditions. This indicates that 1 underwent quasi-reversible

$$[\text{Mo}_2(\text{SPh})_2(\text{CO})_6\text{Cl}]^{-} \xrightarrow{-0.79 \text{ V}} [\text{Mo}_2(\text{SPh})_2(\text{CO})_6\text{Cl}]^{3-}$$

Evidently the CV behavior of 1 is very similar to that of parent compound 2 except the potential is more negative for 1. This is due to the fact that they have similar plane Mo_2S_2 unit. The two-electron transfer character is attributed to the flexibility of cleavage/creation of Mo—Mo bond in Mo_2S_2 unit. ^{6,10,11}

Fig. 2 Cyclic voltammogram of 1 in acetone; Concentration of the sample; 0.0013 mol/L; Scan rate; 100 mV/s.

References

- a) Mutterties, E.L.; Rhodin, R.N.; Band, E.; Brucker,
 C.F.; Pretzer, W.R., Chem. Rev., 79, 91(1979).
 - b) Marks, T.J., Acc. Chem. Res., 25, 57(1992).
 - c) Stiss-Fink, G.; Meister, G., Adv. Organomet. Chem., 35, 41(1993).
- a) Lyons, L.J.; Tegen, M.H.; Haller, K.J.; Evans, D. H.; Treichel, P.M., Organometallics, 7, 357(1988).
 - b) Khalifa, M.E.; Guéguen, M.; Mercier, R.; Pétillon, F.Y.; Saillard, J.Y.; Talarmin, J., Organometallics, 8, 140(1989), and references therein.
 - c) Schollhammer, P.; Pétillon, F.Y.; Poder-guillou, S.; Saillard, J.Y.; Talarmin, J.; Muir, K.W., Chem. Commun., 2633(1966).
 - d) Pistorio, B.J.; Nocera, D.G., *Chem Commum.*, 1831 (1999).
 - e) Heyduk, A.F.; Maeintosh, A.M.; Nocera, D.G., J. Am. Chem. Soc., 121, 5023(1999).

two-electron reduction at a potential -0.79 V vs. SCE in a single step as shown in following Eq. (2):

$$[Mo_2(SPh)_2(CO)_6Cl]^{3-}$$
 (2)

- f) Zhuang, B.; Pan, G.; Huang, L., Polyhedron, 15, 3019(1996).
- g) Wei, Q.; Zhuang, B.; Chen, J., Acta Cryst., C55, 2047(1999).
- (h) Yu, P.; Zhuang, B.; Huang, L., Chin. J. Struct. Chem. (in Chinese), 18, 27(1999).
- 3. a) Wilkinson, G., J. Am. Chem. Soc., 76, 209(1954).
 - b) Wilson, F.C.; Shoemaker, D.P., J. Phys. Chem., 809(1957).
 - c) Ginley, D.S.; Bock, C.R.; Wrighton, M.S., Inorg. Chim. Acta, 23, 85(1977).
 - d) Curtis, M.D.; Fotinos, N.A.; Messerle, L.; Sattelberger, A.P., *Inorg. Chem.*, **22**, 1559(1983).
- a) Admas, R.D.; Collins, D.M.; Cotton, F.A., Inorg. Chem., 13, 1086(1974).
 - b) Klingler, R.J.; Butler, W.; Curtis, M.D., J. Am. Chem. Soc., 97, 3535(1975).
 - c) Curtis, M.D., *Polyhedron*, 6, 759 (1987) and references therein.
- a) Riera, V.; Ruiz, M.A.; Villafan, F., Organometallics, 11, 2854(1992).
 - b) Garcia, G.; Garcia, M.E.; Melon, S.; Riera, V.; Ruiz, M.A.; Villafarie, F., Organometallics, 16, 624 (1997).
- a) Zhuang, B.; McDonald, J.W.; Schultz, F.A.; Newton, W.E., Organometallics, 3, 943(1984).
 - b) Zhuang, B.; Huang, L.; He, L., Chin. J. Struct. Chem. (in Chinese), 14, 359(1995).
- Sheldrick, G.M., SADABS. Program for Absorption Correction, University of Gotingen, Germany, 1996.
- Sheldrick, G. M., SHELXTL/PC, Version 5.03; Siemens Analytical X-ray Instrument Inc., Madison, USA, 1994.
- a) Kubiak, C.P.; Eisenberg, R., J. Am. Chem. Soc., 102, 3637 (1980).
 - b) Anderson, D.J.; Kramarz, K.W.; Eisenberg, R., Inorg. Chem., 35, 2688(1996).
- Smith, D. A.; Zhuang, B.; Newton, W. E.; McDonald,
 J.W.; Schultz, F. A., Inorg. Chem., 26, 2425 (1987).
- Zhuang, B.; Huang, L.; He, L.; Yang, Y.; Lu, J., Inorg. Chim. Acta, 157, 85(1989).

(E200002024 SONG, J.P.; DONG, L.J.)